The tetrahedron in $\mathrm{WNb}_{12} \mathrm{O}_{33}$ is very nearly regular with four $\mathrm{W}-\mathrm{O}$ bonds $1.70 \pm 0.07 \AA$, while in $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$ there are two $\mathrm{W}-\mathrm{O}$ bonds $1.76 \AA$ as well as two of $1.85 \pm 0.07 \AA$. They may be compared with values of $1.79 \AA$ in CaWO_{4} (Kay, Frazer \& Almodovar, 1964) and 1.74 and $1.78 \AA$ in $\mathrm{Eu}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ (Templeton \& Zalkin, 1963) where the isolated tungsten-oxygen tetrahedra are joined only through the Ca or Eu ions.

There is no evidence that either compound forms a defect structure with excess oxygen or with vacated metal positions, and any range of composition despite the evidence for $\mathrm{WNb}_{12} \mathrm{O}_{33}$ in part I , can be expected to be extremely small.

References

Cruickshank, D. W. J., Lynton, H. \& Barclay, G. A. (1962). Acta Cryst. 15, 491.

Gatehouse, B. M. \& Wadsley, A. D. (1964). Acta Cryst. 17, 1545.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Kay, M. I., Frazer, B. C. \& Almodovar, I. (1964). J. Chem. Phys. 40, 504.
Roth, R. S. \& Wadsley, A. D. (1965a). Acta Cryst. 18, 724. Roth, R. S. \& Wadsley, A. D. (1965b). Acta Cryst. 19, 26. Roth, R. S. \& Wadsley, A. D. (1965c). Acta Cryst. 19, 38. Roth, R. S. \& Wadsley, A. D. (1965d). Acta Cryst. 19, 42.
Roth, R. S., Wadsley, A. D. \& Andersson, S. (1965). Acta Cryst. 18, 643.
Suzuki, J. (1960). Acta Cryst. 13, 279.
Templeton, D. H. \& Zalkin, A. (1963). Acta Cryst. 16, 762,
Thomas, L. J. \& Umeda, K. (1957). J. Chem. Phys. 26. 293.

Wadsley, A. D. (1961a). Acta Cryst. 14, 660.
Wadsley, A. D. (1961b). Acta Cryst. 14, 664.

Multiple Phase Formation in the Binary System $\mathbf{N b}_{2} \mathrm{O}_{5}-\mathbf{W O}_{3}$ III. The Structures of the Tetragonal Phases $\mathbf{W}_{\mathbf{3}} \mathbf{N b}_{14} \mathbf{O}_{44}$ and $\mathbf{W}_{\mathbf{8}} \mathbf{N b}_{18} \mathbf{O}_{69}$

By R.S.Roth* and A.D.Wadsley
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 26 October 1964)

Abstract

The unit-cell dimensions of $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$ are $a=21 \cdot 02, c=3 \cdot 824 \AA$, space group $I 4 / m$ or $I 4$. The structure consists of ReO_{3}-type blocks of octahedra four wide, four long, and infinite along the fourfold axis, joined by sharing edges and with tetrahedral W atoms at the junctions of every four blocks. $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$, with the dimensions $a=26 \cdot 25, c=3 \cdot 813 \AA$, most probable space group 14 , has an identical structure except that the blocks are five octahedra in width and length. W and Nb are randomized in the octahedral positions of both phases. The structures were deduced by trial-and-error and refined by twodimensional Fourier methods.

Introduction

The crystal structure analyses of the two tetragonal compounds $\mathrm{W}_{3} \mathrm{~N} \mathrm{~b}_{14} \mathrm{O}_{44}$ and $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$ posed problems of a special kind. In the first place the crystals were extremely small and fragile, and consequently difficult to handle. Since the specimens provided powder diffraction patterns of good quality, we had hoped to use intensities from the diffractometer to confirm the proposed structures, even although the asymmetric unit of each one contained a considerable number of atoms. The powder data, however, could not be used analytically, as the ideal structures of both compounds, although readily proposed, belonged to a symmetry group where overlapping reflexions of the same class were not equivalent. 'One shot' attempts to move the atoms to their real positions showed a general agree-

* Permanent address: National Bureau of Standards, Washington D.C., U.S.A.
ment between observed and calculated intensities, but were not good enough to resolve all of the ambiguities outlined in the introduction to part II of the present series of papers (Roth \& Wadsley, 1965).
In the second place the crystals, when eventually mounted, were so small and the sub-cell development so marked, that the number of reflexions in both cases was extremely small. The structure analyses, using the methods outlined in the preceding paper, are therefore not particularly accurate.

The structure of $\mathbf{W}_{3} \mathbf{N b}_{14} \mathbf{O}_{44}$

A minute needle 0.05 mm long and less than two microns in cross-section was picked from a specimen that had been heated to $1425^{\circ} \mathrm{C}$ for four hours in a sealed platinum capsule and then quenched. The unit-cell dimensions are given in Table 1 with the remainder of the crystallographic constants. The systematically missing reflexions were characteristic of a body-centred
unit cell and the absence of mirror planes, with the possible exception of one perpendicular to the fourfold axis, reduced the eight possible space groups to three, $I 4, I 4$ and $I 4 / \mathrm{m}$. Only 49 independent $h k 0$ and 42 hk 1 reflexions were recorded on prolonged multiple film exposures by the integrating Weissenberg technique with filtered copper radiation.

The orthogonal sub-cell of side $3.8 \AA$ was inclined at angles of 29° and 119° to the a axis, and the few superlattice reflexions were difficult to index, except by plotting the Weissenberg data on to polar coordinates. Even then some ambiguities remained, which subsequently required reappraisal as the analysis proceeded.

The ideal model, which was constructed readily enough, contained octahedra joined by corners as in the ReO_{3}-type structure, and forming blocks 4×4 extending infinitely along the fourfold axis, with tetrahedral atoms at the junctions of adjacent blocks. This arrangement related the structure directly to that of tetragonal $\mathrm{PNb}_{9} \mathrm{O}_{25}$ where the blocks were smaller, $3 \times 3 \times \infty$ (Roth, Wadsley \& Andersson, 1965). The initial assumption that tungsten was present in the tetrahedral positions, with the remaining tungsten and all the niobium atoms statistically distributed over the octahedral sites, was subsequently confirmed. But the F_{o} Fourier projections on to (001) assuming the twodimensional space group $p 4$, raised considerable doubts. Although the octahedral metals and even some of the oxygen atoms were well-defined and of good shape, the tetrahedral tungsten had the appearance of a fourbladed airscrew, and the peak height at the 'hub' was not nearly large enough.

It was demonstrated elsewhere (Gatehouse \& Wadsley, 1964) that the junction of four ReO_{3}-type blocks of the present kind consisted of four empty octahedral positions with the tetrahedron at the centre. It could be argued, therefore, that the irregular shape of this tungsten atom was due to its displacement towards one of these eightfold octahedral positions, the tetragonal symmetry of the phase being retained only because the movements in the four directions were all equally probable. This was disproved by subtracting the metals in several partial difference syntheses based upon the alternative models. The only projection giving oxygen atoms of good shape and with an acceptable background (Fig. 1) was based upon the original as-

Table 1. Crystallographic data for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$ and $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$
Symmetry: tetragonal
Unit-cell dimensions $\quad\left\{\begin{array}{ccc}a & \mathrm{~W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44} & \mathrm{~W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69} \\ c & 21.02 \AA \AA & 26.824 \AA \\ 3.85 \AA \AA\end{array}\right.$

Systematically absent reflexions $h k l$ with $h+k+l \neq 2 \mathrm{n}$ Possible space groups: $I 4$ (No. 79), $I \overline{4}$ (No. 82), $I 4 / m$ (No. 87)

D_{m}	$4 \cdot 9 \pm 0 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$	$5 \cdot 2 \pm 0 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$
D_{x}	$5 \cdot 03 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$	$5 \cdot 37 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
\boldsymbol{Z}	2	2
μ	$594 \mathrm{~cm}^{-1}$	$659 \mathrm{~cm}^{-1}$

Table 2. Fractional atomic parameters for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$

Space group I4				
Atom	Point position	x	y	z
W	2(c)	0	$\frac{1}{2}$	$\frac{1}{4}$
* B (1)	$8(g)$	0.0355	$0 \cdot 1237$	0
$B(2)$	$8(g)$	$0 \cdot 1954$	$0 \cdot 2132$	0
$B(3)$	$8(g)$	0.2489	0.0552	0
$B(4)$	$8(g)$	0.3932	$0 \cdot 1270$	$\frac{1}{2}$
$\mathrm{O}(1)$	$8(g)$	0.0355	$0 \cdot 1237$	2
$\mathrm{O}(2)$	$8(\mathrm{~g})$	0.0870	0.0441	0
$\mathrm{O}(3)$	$8(g)$	0.1164	$0 \cdot 1800$	0
O(4)	$8(g)$	0.2149	0.0077	0
O(5)	$8(g)$	$0 \cdot 2194$	0.2357	$\frac{1}{2}$
O(6)	$8(g)$	0.2518	0.1417	0
$\mathrm{O}(7)$	$8(g)$	0.3130	0.0789	
$\mathrm{O}(8)$	$8(g)$	0.3393	0.1959	$\frac{1}{2}$
O(9)	$8(g)$	0.3748	$0 \cdot 1070$	0
$\mathrm{O}(10)$	$8(g)$	0.4412	0.0383	$\frac{1}{2}$
O(11)	8(g)	0.4783	$0 \cdot 1564$	$\frac{1}{2}$

* B represents a 'hybrid' metal atom $\frac{1}{8}(\mathrm{~W}+7 \mathrm{Nb})$.

Average standard deviations for the metals $\sigma(x)=\sigma(y)=$ 0.0007 ; for oxygen $\sigma(x)=\sigma(y)=0.0060$.

Table 3. Observed and calculated structure factors for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}\left(\times 10^{-1}\right)$ Observed data only.

b 12	${ }^{\prime}$ 。	$\left\|r_{0}\right\|$	h k 1	F 。	$T_{0} 1$
$\begin{array}{llll}10 & 0 \\ 12 & 0 \\ 12\end{array}$	27	30	22.51	25	
1200	74	67	$\begin{array}{llll}3 & 5 & 1 \\ & 6 & 1\end{array}$	18	21
11.10	33	34	961	61	56
$\begin{array}{lll}13 & 1 & 0 \\ 25 & 1 & 0\end{array}$	53 36	52 37	$\begin{array}{rrrr}21 & 6 & 1 \\ 0 & 7 & 1\end{array}$	26 18	3
2510 4 4	36 40	37 41	$\begin{array}{llll}0 & 7 & 1 \\ 2 & 7 & 1\end{array}$	18 50	22 50
1420	20	22	871	22	24
2420	26	33	181	19	22
530	114	124	$\begin{array}{llll}3 & 8 & 1\end{array}$	34	32
1730	59	58	15 8 1	64	49
$\begin{array}{lll}4 & 4 & 0 \\ 4 & 4\end{array}$	37 28	${ }_{28}^{27}$	710 1710	87	89
8840	28	20	17 17 19 10 10 1	20 54	19 50
350	16	24	2011	21	19
750	24	21	0131	39	38
950	105	99	:12 131	61	57
260	12	19	4151	89	89
$\begin{array}{ll}10 & 6 \\ \\ 22 & 6\end{array}$	76	72	16 16 17 15 15	45	45
$\begin{array}{rrr}22 & 6 & 0 \\ 3 & 7 & 0\end{array}$	54	56 26	$\begin{array}{rrrr}17 & 16 & 1 \\ 9 & 18 & 1\end{array}$	37 60	30 54
770	26	15	2191	29	40
970	34	38	12191	22	19
280	81	80	1201	49	45
880	37	37	113201	35	40
1480	68	69	1421	33	24
1 5 5 0	16	29 14	$\left\lvert\, \begin{array}{llll}1 & 22 & 1 \\ 0 & 23 & 1\end{array}\right.$	29	33
790	47	47	0 0 231	21 37	17 34
1590	32	28			
6100	42	37	,		
810 711 10	18	21 57	i		
19110	61	60	I		
${ }^{6} 120$	38	37	1		
$\begin{array}{rr}12120 \\ 5 & 13\end{array}$	49	47	:		
11130	31	34	\%		
4140	75	76			
$\begin{array}{r}515 \\ \hline 17 \\ \hline 15\end{array}$	47	43			
17150 4160	20	53 24			
10160	32	29			
16160	29	36	1		
9170 119	65	88	1		
119 20 20	46	45			
14200	63	71			
6220	46	52			
$\begin{array}{cc}7 & 23 \\ 0 & 1 \\ 1\end{array}$	26	24 56			
$2 \begin{array}{lll}2 & 1 & 1\end{array}$	47	36			
$\begin{array}{llll}6 & 1 & 1\end{array}$	27	28			
$\begin{array}{llll}12 & 1 & 1 \\ 24 & 1 & 1\end{array}$	65	76			
24 3 21	43	33			
521	78	65			
$\begin{array}{rrrr}11 & 2 & 1 \\ 4 & 3 & 1\end{array}$	23	25 56			
$\begin{array}{llll}4 & 3 & 1 \\ 6 & 3 & 1\end{array}$	69 15	56 16			
1831	29	29			
$\begin{array}{lll} 17 & 4 & 1 \\ 10 & 5 \end{array}$	35	37 84 84			
$\begin{array}{lll} 10 & 5 & 1 \\ 20 & 5 & 1 \end{array}$	${ }_{28} 98$	84 24			

Table 4. Interatomic distances for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$

Metal$B(1)$	Bonded oxygen atoms*					Distances in \AA					O-O distances in \AA			
						(Sam	order	as in	lumn		Average	Max.	Min.	Average
	1(2);	2,	2^{\prime},	4',	3	1.91(2);	1.99 ,	$1 \cdot 84$,	2.12,	2.07	1.97	$2 \cdot 92$	$2 \cdot 66$	2.79
$B(2)$	5(2);	5',	6,	3 ,	8^{\prime}	2.04(2);	$2 \cdot 09$,	1-91,	$1 \cdot 80$,	$2 \cdot 04$	1.99	$3 \cdot 12$	2.38	2.75
$B(3)$	7(2);	4,	6 ,	9,		2.06(2);	1.78 ,	1.95 ,	2.18,	$2 \cdot 03$	$2 \cdot 01$	$3 \cdot 19$	2.39	2.81
$B(4)$	9(2);	7,	8,	11,	10	2.00(2);	1.97,	$1 \cdot 84$,	1-89,	$2 \cdot 12$	1.97	3.08	2.39	2.75

* Given by numbers (Table 2, Fig. 3). The first, followed by (2), are the two oxygen atoms lying over and under the metal. E.s.d's of metal-oxygen distances are $\pm 0 \cdot 14 \AA$; for oxygen-oxygen $0 \cdot 18 \AA$.
sumptions, and the one distorted peak in the F_{0} projection was evidently a consequence of the limited number of observed data. This is discussed below.
After two $F_{o}-F_{c}$ syntheses the R index for the $h k 0$ reflexions dropped to $9 \cdot 4 \%$ and further refinement was not considered. Two sets of $h k 1$ structure factors were then computed. The octahedral atoms in both were placed in the special planes at $z=0$ or $\frac{1}{2}$ given by the ideal model. In the first set the two tetrahedral W atoms were distributed over the $4(d)$ positions of the space group $I 4 / m\left(0 \frac{1}{4} \frac{1}{2}\right), R$ being $12 \cdot 5 \%$. In the second these atoms were ordered in the 2(c) positions of the polar space group $I \overline{4}$, ($0 \frac{1}{4} \frac{1}{2}$), for which R was $12 \cdot 6 \%$. Evidently the data are not sensitive enough to distinguish between the two possibilities. The parameters in Table 2 and the comparison between F_{o} and F_{c} which include an overall isotropic B of $0.3 \AA^{-2}$ are given for $I \overline{4}$ (Table 3) while the bond lengths (Table 4) are the same for both space groups.

The structure of $\mathbf{W}_{8} \mathbf{N b}_{18} \mathbf{O}_{69}$

The crystal, a small needle 0.03 mm long and about 2 microns thick, was selected from a specimen of the

Fig. 1. $F_{o}-F_{\text {metal }}$ electron-density projection on to (001) for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$; zero contours drawn as broken lines. The oxygen atoms, with the positions from which metals were extracted indicated by crosses.

Fig. 2. $F_{o}-F_{\text {metal }}$ electron-density projection on to (001) for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$, showing the oxygen atoms; zero contours drawn as broken lines. The positions from which metals were extracted are indicated by crosses.
composition $9 \mathrm{Nb}_{2} \mathrm{O}_{5}: 8 \mathrm{WO}_{3}$ quenched from $1350{ }^{\circ} \mathrm{C}$ after heating for 18 hours in a sealed platinum tube. The crystallographic data are given in Table 1. The diffraction symmetry was identical with that of $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$, and the space groups were therefore limited once more to $I 4, I \overline{4}$ or $I 4 / \mathrm{m}$.

Only 47 independent $h k 0$ reflexions were recorded on integrated Weissenberg films exposed with filtered copper radiation. Since there were 26 atoms in the asymmetric unit of the ideal structure, only three being in special positions, it was necessary to increase the number of data. The crystal was exposed again for two weeks, this time without integration, and an additional 27 weak $h k 0$ reflexions were recorded. The two sets were then placed on the same scale.

The sub-cell was inclined at angles of 32° and 122° to the positive direction of the a axis. Since the bodycentred tetragonal phases $\mathrm{PNb}_{9} \mathrm{O}_{25}$ and $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$ contained blocks $3 \times 3 \times \infty$ and $4 \times 4 \times \infty$ respectively, the most logical ideal structure for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$ would

Table 5. Fractional atomic parameters for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$ Space group $I \overline{4}$

Atom	Point position	x	y	z
W	2 (c)	0	$\frac{1}{2}$	$\frac{1}{4}$
* B (1)	2(a)	0	0	${ }_{0}^{1}$
$B(2)$	8(g)	0.0448	$0 \cdot 2015$	0
$B(3)$	$8(g)$	$0 \cdot 1230$	0.0780	0
$B(4)$	$8(g)$	0.2474	0.1566	0
$B(5)$	$8(\mathrm{~g})$	0.3259	0.0338	0
$B(6)$	$8(g)$	$0 \cdot 3308$	$0 \cdot 2194$	$\frac{1}{2}$
$B(7)$	8(g)	$0 \cdot 4092$	0.0950	$\frac{1}{2}$
$\mathrm{O}(1)$	2(b)	0	0	$\frac{1}{2}$
$\mathrm{O}(2)$	$8(g)$	0.045	$0 \cdot 201$	$\frac{1}{2}$
$\mathrm{O}(3)$	$8(g)$	0.064	0.045	0
$\mathrm{O}(4)$	$8(\mathrm{~g})$	0.081	$0 \cdot 144$	0
$\mathrm{O}(5)$	$8(g)$	$0 \cdot 123$	0.078	$\frac{1}{2}$
O(6)	8(g)	$0 \cdot 162$	$0 \cdot 020$	0
O(7)	$8(g)$	$0 \cdot 189$	0.125	0
$\mathrm{O}(8)$	$8(\mathrm{~g})$	$0 \cdot 221$	$0 \cdot 220$	0
$\mathrm{O}(9)$	$8(g)$	$0 \cdot 260$	$0 \cdot 172$	$\frac{1}{2}$
$\mathrm{O}(10)$	$8(\mathrm{~g})$	$0 \cdot 270$	0.002	0
$\mathrm{O}(11)$	$8(g)$	$0 \cdot 294$	0.099	0
$\mathrm{O}(12)$	$8(g)$	0.319	$0 \cdot 205$	0
O(13)	$8(g)$	$0 \cdot 343$	0.045	$\frac{1}{2}$
O(14)	8(g)	0.373	$0 \cdot 149$	$\frac{1}{2}$
O(15)	$8(\mathrm{~g})$	$0 \cdot 389$	0.251	$\frac{1}{2}$
O(16)	$8(g)$	0.398	0.077	0
O(17)	$8(g)$	0.448	0.023	$\frac{1}{2}$
O(18)	8(g)	0.473	$0 \cdot 125$	$\frac{1}{2}$

* B represents a 'hybrid' metal atom $\frac{1}{25}(7 \mathrm{~W}+18 \mathrm{Nb}$).

Average standard deviations for the metals $\sigma(x)=\sigma(y)=$ $0 \cdot 0004$; for oxygen $\sigma(x)=\sigma(y)=0 \cdot 0040$.

Table 6. Interatomic distances for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$

Metal	Bonded oxygen atoms*					Distances (\AA)					O-O distances in \AA			
						(same order as column 2)					Average2.00	$\begin{aligned} & \text { Max. } \\ & 2.90 \end{aligned}$	Min.$2 \cdot 80$	Average$2 \cdot 83$
$B(1)$	1(2);	3(4)				1.91(2);	2.05 (4)							
$B(2)$	2(2);	10^{\prime},	15^{\prime}	4,	6^{\prime}	1-91(2);	2.18,	$2 \cdot 14$,	1.78 ,	1.99	1.99	3.02	$2 \cdot 60$	2.81
$B(3)$	5(2);	4 ,	7,	6,	3	1.91(2);	2.05 ,	$2 \cdot 13$,	1.83 ,	1.77	1.93	2.86	$2 \cdot 60$	2.74
$B(4)$	9(2);	8,	12,	11,	7	1.98(2);	1.80,	2.27,	$1 \cdot 94$,	1.74	1.95	2.94	$2 \cdot 50$	2.73
$B(5)$	13(2);	11,	16,	18',	10	1.98(2);	1.91 ,	2.21,	$2 \cdot 05$,	1.69	1.97	2.86	2.53	2.75
$B(6)$	12(2);	8^{\prime},	15,	14,	9	1.97(2);	2.09,	1.74 ,	$2 \cdot 15$,	$2 \cdot 24$	2.03	3.03	$2 \cdot 50$	2.81
$B(7)$	16(2);	14,	18,	17,	13	1.99(2);	1.71,	1.85,	2.15,	$2 \cdot 18$	1.98	$3 \cdot 02$	$2 \cdot 53$	2.78

* Given by number (Table 5, Fig. 4). The first, followed by (2), are the two oxygen atoms over and under the metal. E.s.d's of metal-oxygen distances are $\pm 0 \cdot 11 \AA$; for oxygen-oxygen $0 \cdot 15 \AA$.
contain $5 \times 5 \times \infty$ blocks, packed in exactly the same way as the other two. This gave the correct formula and orientation. Rapid refinement was achieved by electron density projections on to (001) after shifting the atoms from their ideal positions to give realistic distances between the metals (Roth \& Wadsley, 1965), and placing W at the tetrahedral sites, with the remaining W and the Nb disordered in the octahedral positions. The tetrahedrally coordinated atom was again very distorted, but the $F_{o}-F_{\text {metal }}$ projection (Fig. 2) confirmed that this had no meaning in terms of

Table 7. Observed and calculated structure factors for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}\left(\times 10^{-1}\right)$
Unobserved data omitted

b $k 1$	F_{0}	$\left\|r_{0}\right\|$	h $k 1$	F_{0}	$\|F\|$	${ }^{6} \mathrm{k}$	F。	$F_{0}{ }_{0}$
1000	20	14	319	31	34	2691	49	65
1200	35	38	5190	83	80	${ }^{28} 981$	21	15
2400	84	81	4200	45	43	1 1 3 10 01	42	28
710	15	10	20200	73	80	3101	64	49
91 11 10	15	15	19210	60	64	9 9101	21	22
1110	15	16	10220	108	123	15101	23	24
1310	52	41	1230	24	27	17101	34	45
1510	152	134	1250	63	84 117	27101	32 26	24
2310	24	34	16260	108	117	4111	26	26
220	17	22	6280	98	95	8111	17	19
$4{ }^{4} 20$	28	27	7290	54	41	18111	89	87
$14{ }^{14} 20$	55	49	$1{ }^{1} 0$	106	95	26111	24	18
1620	100	81	$9{ }^{9} 01$	34	27	5121	17	19
330	24	21	$\begin{array}{llll}17 & 0 & 1\end{array}$	17	20	9121	20	19
$5{ }_{5} 30$	81	73	$\begin{array}{llll}25 & 0 & 1\end{array}$	82	78	17121	38	40
730	16	10	$\begin{array}{lll}2 & 1 & 1\end{array}$	81	51	19121	25	32
17 31 3	35	33	$\begin{array}{rrrr}8 & 1 & 1 \\ 16 & 1 & 1\end{array}$	34	33	6 8 8 131 1	${ }_{120} 2$	16
$\begin{array}{rrrr}31 & 3 & 0 \\ 4 & 4 & 0\end{array}$	58 20	70	$\begin{array}{llll}16 & 1 & 1 \\ 24 & 1 & 1\end{array}$	65	62 21	8 8 20 131 13	125	149
$\begin{array}{lll}4 & 4 & 0 \\ 6 & 4 & 0\end{array}$	${ }_{220}^{20}$	17 214	$\begin{array}{ll}24 & 1 \\ 26 & 1 \\ 1\end{array}$	27 15	${ }_{21}^{21}$	29 29 213 13	22 26	26 18
3040	52	57	121	17	18	24131	29	34
550	36	35	$\begin{array}{lll}3 & 2 & 1 \\ 5 & 2 & 1\end{array}$	60	45	7141	28	18
750	42	44	$\begin{array}{llll}5 & 2 & 1 \\ 7 & 2 & 1\end{array}$	13	17	21141	36	29
9 21 21	113	119	$\begin{array}{rrrr}7 & 2 & 1 \\ 15 & 2 & 1\end{array}$	54 116	45 124	231414 22 151	72 30	86 39
460	28	28	$\begin{array}{llll}29 & 2 & 1\end{array}$	44	27	24151	39	32
660	18	16	431	62	47	14171	101	101
860	28	31	$6{ }_{6} \quad 31$	117	111	3181	25	15
1060	57	51	$\begin{array}{llll}14 & 3 & 1 \\ 30 & 3 & \end{array}$	44	43		25	33
$\begin{array}{lll}3 & 7 & 0 \\ 9 & 7 & 0\end{array}$	33 28	27 25	$\begin{array}{rrrr}30 & 3 & 1 \\ 3 & 4 & 1\end{array}$	85 17	99 16	27 481 4 49 1	23 120	17 149
1170	178	179	$\begin{array}{lll}5 & 4 & 1\end{array}$	107	93	18191	38	29
280	33	26	$\begin{array}{lll}7 & 4 & 1\end{array}$	43	24	19201	61	78
1280	137	116	13 4 1 31 4	26	31	20211	54	46
190	22	14	$\begin{array}{llll}31 & 4 & 1\end{array}$	33	26	3221	19	19
$\begin{array}{rr}3 \\ 11 \\ 11 & 9 \\ 9 & 0 \\ 13\end{array}$	61 42	56 40	$\begin{array}{llll}4 & 5 & 1 \\ 6 & 5 & 1\end{array}$	31 43	29	$\begin{array}{rr}11 & 221 \\ 2 & 231\end{array}$	33	34
$\begin{array}{ll}11 & 9 \\ 13 & 9 \\ 13 & 0\end{array}$	42	42	$\begin{array}{lll}6 & 5 & 1 \\ 8 & 5 & 1\end{array}$	173	27 16	2 2 231	34 100	31
2790	83	99	1212 5	25	26	10241 13 1	56	64
2100	145	139	$\begin{array}{llll}22 & 5 & 1\end{array}$	45	45	13241	25	24
1010.	35	41	$\begin{array}{lll}3 & 6 & 1 \\ 5 & 6 & 1\end{array}$	14	16	14251	43	33
18100	39	30	$\begin{array}{rrrr}5 & 6 & 1 \\ 11 & 6 & 1\end{array}$	25	22	15261	53	69
1110	55	50	$\begin{array}{llll}11 & 6 & 1 \\ 13 & 6 & 1\end{array}$	20	21	17261	21	17
9110	55	50	1361	34	40	16271	54	44
17110	136	137	21.61	55	65	7281	54	61
$\begin{array}{lll}612 \\ 812 & 0\end{array}$	39	32 72	$\begin{array}{ccc}23 & 6 & 1 \\ 4 & 7 & 1\end{array}$	22 23	25 24	15 15 681 681 14	17 58	17
18120	43	40	$\begin{array}{rrrr}4 & 7 & 1 \\ 10 & 7 & 1\end{array}$	26	15	14291	16	54 59
7130	86	83	1271	125	141	5301	22	23
$\begin{array}{lll}9 & 13 \\ 8 & 14 & 0\end{array}$	46	37	$\begin{array}{lll}20 & 7 & 1 \\ 24 & 7 & 1\end{array}$	25	32		17	18
$\begin{array}{rr}814 & 0 \\ 1614 & 0\end{array}$	97 23	${ }_{28} 8$	$\begin{array}{lll}24 & 7 & 1 \\ 28 & 7 & 1\end{array}$	27 23 23	27 23	10311 3 321	22 18	18
7150	44	45	1881	25	26			
15 15 23 25	33 87	35 109	3 1 11 8 8 1	35	29			
2315 616	87 42	109 45	$\begin{array}{lll}11 & 8 & 1 \\ 13 & 8 & 1\end{array}$	91 24	93 30			
14160	57	76	1981	15	27			
3170	35	34	25 8 1 8 1	43	33			
517 1317	58 57	63	$\begin{array}{rrrr}27 & 8 & 1 \\ 2 & 9 & 1\end{array}$	46 401	49			
13180 2180	24	19	$10{ }^{2} 981$	161 39	94 35			
4180	124	123	$\begin{array}{lll}14 & 9 & 1 \\ 18 & & 1\end{array}$	22	28			
14180	34	39	1891	18	29			

Fig. 3. Drawing of atom positions in $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$; small circles metals, larger circles oxygen. The tetrahedral W atoms are shaded.

Fig. 4. Drawing of atom positions in $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$; small circles metals, larger circles oxygen. The tetrahedral W atoms are shaded.
physical displacements towards the neighbouring unoccupied octahedral positions. After two $F_{0}-F_{c}$ syntheses R for the $h k 0$ reflexions was $10 \cdot 6 \%$. The ambiguities of space group noted for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$ apply equally to the present case for the same reasons. For the 104 observed $h k 1$ data, R for $I \overline{4}$ was 16.0% and for $I 4 / m 17.8 \%$. Parameters are listed in Table 5, bond lengths in Table 6, and F_{o} and F_{c} in Table 7 where the value for B (isotropic) is $0.3 \AA^{-2}$.

Discussion

The structures of the tetragonal phases are illustrated by Figs. 3 and 4. In projection, the octahedral metal atoms appearing at both levels form rows exactly parallel and at right angles to each other. These orthogonal groups, constituting the bulk of the scattering matter in both structures, are primarily responsible for the crystallographic sub-cell and contribute little or nothing to the remainder of the reflexions, most of which are below the observable limit. The tetrahedral tungsten atoms, on the other hand, are not collinear and interrupt each row at finite intervals; being in the special positions ($0 \frac{1}{2} \frac{1}{4}$) they contribute equally to all $h k 0$ reflexions. Projections of electron density based
upon the observed data, therefore contain only a small fraction of them, and it is not surprising that the octahedral metals appeared as well shaped peaks, while the tetrahedral atoms, for which so much necessary information was missing, did not.

It is difficult to discuss variations of interatomic distance with any assurance as the standard deviations are so large. The tetrahedral dimensions are almost the same for both compounds, $1 \cdot 76 \pm 0 \cdot 12 \AA$ for the W-O distances and $106 \cdot 0^{\circ}$ and $113 \cdot 3^{\circ}$ for the $\mathrm{O}-\mathrm{W}-\mathrm{O}$ angles in $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$, and $1.77 \pm 0.14 \AA$ together with 106.7° and $115 \cdot 3^{\circ}$ for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$. These can be compared with the W-O distances of $1.70 \pm 0.07 \AA$ for $\mathrm{WNb}_{12} \mathrm{O}_{33}$ and 1.76 and $1.85 \pm 0.07 \AA$ for $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$. The octahedra at the centres of the blocks, $B(1)$ for $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$ and $B(2)$ and $B(3)$ for $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$ appear to be no more regular than the others (Tables 4 and 6), but this may simply be a consequence of the large uncertainties. In all other respects the dimensions appear to be normal.

References

Gatehouse, B. M. \& Wadsley, A. D. (1964). Acta Cryst. 17, 1545.
Roth, R. S. \& Wadsley, A. D. (1965). Acta Cryst. 19, 32.
Roth, R. S., Wadsley, A. D. \& Andersson, S. (1965). Acta Cryst. 18, 643.

Multiple Phase Formation in the Binary System $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$. IV. The Block Principle

By R.S.Roth* and A.D. Wadsley
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 26 October 1964)

Abstract

The four new phases found in the $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ system each contain octahedral blocks of a specific size, joined in a manner which leaves tetrahedral positions for some of the metal atoms. The many ways in which logical structures containing blocks of octahedra can be devised are briefly discussed. These can all be summarized by a general formula containing several independent variables, representing the size of block and its mode of packing.

The niobium-tungsten mixed oxide phases

At the outset of this study (Roth \& Wadsley, 1965b) an attempt was made to predict the compositions of previously unsuspected mixed-oxide phases of niobium and tungsten. These predictions were based upon certain relationships between a number of other niobates, from which it was supposed that structurally related homologues might exist in the $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ compos-

[^0]ition region. Although one and possibly two of these new phases were found, namely $\mathrm{WNb}_{12} \mathrm{O}_{33}$ and $\mathrm{WNb}_{30} \mathrm{O}_{78}$, there were three which did not fit exactly into this preconceived pattern. Their structures were nevertheless related in a logical way, and they are now discussed in this paper.
Each metal atom in the cubic ReO_{3}-type structure is in octahedral coordination with oxygen, and every oxygen atom is common to two metals. The threedimensional structure, therefore, contains octahedra all sharing corners, and is conveniently pictured as a chessboard pattern of squares each representing an

[^0]: * Permanent address: National Bureau of Standards, Washington D.C., U.SA.

